Class

com.github.ozancicek.artan.ml.mixture

MultivariateGaussianMixture

Related Doc: package mixture

Permalink

class MultivariateGaussianMixture extends FiniteMixture[Vector, MultivariateGaussianDistribution, GaussianMixtureDistribution, GaussianMixtureInput, GaussianMixtureState, GaussianMixtureOutput, MultivariateGaussianMixture] with HasInitialMeans with HasInitialMeansCol with HasInitialCovariances with HasInitialCovariancesCol

Online multivariate gaussian mixture estimation with a stateful transformer, based on Cappe(2011) Online Expectation-Maximisation paper.

Outputs an estimate for each input sample in a single pass, by replacing the E-step in EM with a stochastic E-step.

Linear Supertypes
HasInitialCovariancesCol, HasInitialCovariances, HasInitialMeansCol, HasInitialMeans, FiniteMixture[Vector, MultivariateGaussianDistribution, GaussianMixtureDistribution, GaussianMixtureInput, GaussianMixtureState, GaussianMixtureOutput, MultivariateGaussianMixture], MixtureParams[MultivariateGaussianMixture], HasBatchTrainEnabled, HasUpdateHoldoutCol, HasBatchTrainTol, HasBatchTrainMaxIter, HasInitialMixtureModelCol, HasDecayRate, HasMinibatchSizeCol, HasMinibatchSize, HasUpdateHoldout, HasSampleCol, HasStepSize, HasStepSizeCol, HasInitialWeightsCol, HasInitialWeights, StatefulTransformer[String, GaussianMixtureInput, GaussianMixtureState, GaussianMixtureOutput, MultivariateGaussianMixture], StatefulTransformerParams[MultivariateGaussianMixture, String], HasStateTimeoutDuration, HasStateKeyCol[String], HasWatermarkDuration, HasEventTimeCol, HasStateTimeoutMode, Transformer, PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. MultivariateGaussianMixture
  2. HasInitialCovariancesCol
  3. HasInitialCovariances
  4. HasInitialMeansCol
  5. HasInitialMeans
  6. FiniteMixture
  7. MixtureParams
  8. HasBatchTrainEnabled
  9. HasUpdateHoldoutCol
  10. HasBatchTrainTol
  11. HasBatchTrainMaxIter
  12. HasInitialMixtureModelCol
  13. HasDecayRate
  14. HasMinibatchSizeCol
  15. HasMinibatchSize
  16. HasUpdateHoldout
  17. HasSampleCol
  18. HasStepSize
  19. HasStepSizeCol
  20. HasInitialWeightsCol
  21. HasInitialWeights
  22. StatefulTransformer
  23. StatefulTransformerParams
  24. HasStateTimeoutDuration
  25. HasStateKeyCol
  26. HasWatermarkDuration
  27. HasEventTimeCol
  28. HasStateTimeoutMode
  29. Transformer
  30. PipelineStage
  31. Logging
  32. Params
  33. Serializable
  34. Serializable
  35. Identifiable
  36. AnyRef
  37. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new MultivariateGaussianMixture(mixtureCount: Int)

    Permalink
  2. new MultivariateGaussianMixture(mixtureCount: Int, uid: String)

    Permalink

    mixtureCount

    number of mixture components

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  5. def asDataFrame(in: Dataset[GaussianMixtureOutput]): DataFrame

    Permalink
    Attributes
    protected
    Definition Classes
    StatefulTransformer
  6. def asDataFrameTransformSchema(schema: StructType): StructType

    Permalink
    Attributes
    protected
    Definition Classes
    StatefulTransformer
  7. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  8. final val batchTrainEnabled: Param[Boolean]

    Permalink

    Flag for enabling batch EM

    Flag for enabling batch EM

    Definition Classes
    HasBatchTrainEnabled
  9. final val batchTrainMaxIter: Param[Int]

    Permalink

    maxIter for batch EM

    maxIter for batch EM

    Definition Classes
    HasBatchTrainMaxIter
  10. final val batchTrainTol: Param[Double]

    Permalink

    Tolerance to stop iterations in batch EM

    Tolerance to stop iterations in batch EM

    Definition Classes
    HasBatchTrainTol
  11. def buildInitialMixtureModel(dataFrame: DataFrame): DataFrame

    Permalink

    Build the initialMixtureModel column from distribution specific parameters

    Build the initialMixtureModel column from distribution specific parameters

    Attributes
    protected
    Definition Classes
    MultivariateGaussianMixture → FiniteMixture
  12. final def clear(param: Param[_]): MultivariateGaussianMixture.this.type

    Permalink
    Definition Classes
    Params
  13. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  14. def copy(extra: ParamMap): MultivariateGaussianMixture

    Permalink

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params.

    Definition Classes
    MultivariateGaussianMixture → Transformer → PipelineStage → Params
  15. def copyValues[T <: Params](to: T, extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  16. final val decayRate: Param[Double]

    Permalink

    Decaying stepSize

    Decaying stepSize

    Definition Classes
    HasDecayRate
  17. final def defaultCopy[T <: Params](extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  18. val defaultStateKey: String

    Permalink
    Attributes
    protected
    Definition Classes
    MultivariateGaussianMixture → HasStateKeyCol
  19. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  20. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  21. final val eventTimeCol: Param[String]

    Permalink

    Param for event time column name, which marks the event time of the received measurements.

    Param for event time column name, which marks the event time of the received measurements. If set, the measurements will be processed in ascending order according to event time.

    Definition Classes
    HasEventTimeCol
  22. def explainParam(param: Param[_]): String

    Permalink
    Definition Classes
    Params
  23. def explainParams(): String

    Permalink
    Definition Classes
    Params
  24. final def extractParamMap(): ParamMap

    Permalink
    Definition Classes
    Params
  25. final def extractParamMap(extra: ParamMap): ParamMap

    Permalink
    Definition Classes
    Params
  26. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  27. final def get[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  28. final def getBatchTrainEnabled: Boolean

    Permalink

    Getter for batch EM flag

    Getter for batch EM flag

    Definition Classes
    HasBatchTrainEnabled
  29. final def getBatchTrainMaxIter: Int

    Permalink

    Getter for batch train max iter parameter

    Getter for batch train max iter parameter

    Definition Classes
    HasBatchTrainMaxIter
  30. final def getBatchTrainTol: Double

    Permalink

    Getter for batch train tolerance

    Getter for batch train tolerance

    Definition Classes
    HasBatchTrainTol
  31. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  32. def getDecayRateExpr: UserDefinedFunction

    Permalink

    Get decay rate as udf

    Get decay rate as udf

    Attributes
    protected
    Definition Classes
    HasDecayRate
  33. final def getDefault[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  34. def getEventTimeCol: String

    Permalink

    Getter for event time column parameter

    Getter for event time column parameter

    Definition Classes
    HasEventTimeCol
  35. final def getInitialCovariances: Array[Array[Double]]

    Permalink

    Getter for initial covariances parameter

    Getter for initial covariances parameter

    Definition Classes
    HasInitialCovariances
  36. final def getInitialCovariancesCol: String

    Permalink

    Getter for initial covariances column

    Getter for initial covariances column

    Definition Classes
    HasInitialCovariancesCol
  37. final def getInitialMeans: Array[Array[Double]]

    Permalink

    Getter for initial means

    Getter for initial means

    Definition Classes
    HasInitialMeans
  38. final def getInitialMeansCol: String

    Permalink

    Getter for initial means column

    Getter for initial means column

    Definition Classes
    HasInitialMeansCol
  39. final def getInitialMixtureModelCol: String

    Permalink

    Getter for initial mixture model column

    Getter for initial mixture model column

    Definition Classes
    HasInitialMixtureModelCol
  40. final def getInitialWeights: Array[Double]

    Permalink

    Getter for initialWeights parameter

    Getter for initialWeights parameter

    Definition Classes
    HasInitialWeights
  41. final def getInitialWeightsCol: String

    Permalink

    Getter for initialWeightsCol parameter

    Getter for initialWeightsCol parameter

    Definition Classes
    HasInitialWeightsCol
  42. final def getMinibatchSize: Int

    Permalink

    Minibatch param getter

    Minibatch param getter

    Definition Classes
    HasMinibatchSize
  43. final def getMinibatchSizeCol: String

    Permalink

    MinibatchSizeCol param getter

    MinibatchSizeCol param getter

    Definition Classes
    HasMinibatchSizeCol
  44. final def getOrDefault[T](param: Param[T]): T

    Permalink
    Definition Classes
    Params
  45. def getParam(paramName: String): Param[Any]

    Permalink
    Definition Classes
    Params
  46. final def getSampleCol: String

    Permalink

    Getter for sample column.

    Getter for sample column.

    Definition Classes
    HasSampleCol
  47. final def getStateKeyColname: String

    Permalink

    Getter for state key column name parameter

    Getter for state key column name parameter

    Definition Classes
    HasStateKeyCol
  48. final def getStateKeyColumn: Column

    Permalink

    Getter for state key column

    Getter for state key column

    Definition Classes
    HasStateKeyCol
  49. def getStateTimeoutDuration: Option[String]

    Permalink

    Getter for state timeout duration parameter

    Getter for state timeout duration parameter

    Definition Classes
    HasStateTimeoutDuration
  50. final def getStepSize: Double

    Permalink

    Getter for stepSize parameter

    Getter for stepSize parameter

    Definition Classes
    HasStepSize
  51. final def getStepSizeCol: String

    Permalink

    Getter for stepSizeCol parameter

    Getter for stepSizeCol parameter

    Definition Classes
    HasStepSizeCol
  52. def getTimeoutMode: TimeoutMode

    Permalink

    Getter for timeout mode

    Getter for timeout mode

    returns

    TimeoutMode

    Definition Classes
    HasStateTimeoutMode
  53. def getUDFWithDefault[DefaultType](defaultParam: Param[DefaultType], colParam: Param[String])(implicit arg0: scala.reflect.api.JavaUniverse.TypeTag[DefaultType]): Column

    Permalink
    Attributes
    protected
    Definition Classes
    StatefulTransformer
  54. final def getUpdateHoldout: Int

    Permalink

    Getter for update holdout param

    Getter for update holdout param

    Definition Classes
    HasUpdateHoldout
  55. final def getUpdateHoldoutCol: String

    Permalink

    Getter for update holdout column param

    Getter for update holdout column param

    Definition Classes
    HasUpdateHoldoutCol
  56. def getWatermarkDuration: String

    Permalink

    Getter for watermark duration parameter

    Getter for watermark duration parameter

    Definition Classes
    HasWatermarkDuration
  57. final def hasDefault[T](param: Param[T]): Boolean

    Permalink
    Definition Classes
    Params
  58. def hasParam(paramName: String): Boolean

    Permalink
    Definition Classes
    Params
  59. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  60. final val initialCovariances: Param[Array[Array[Double]]]

    Permalink

    Initial covariances nested array, column major and mixtureCount x sampleSize**2

    Initial covariances nested array, column major and mixtureCount x sampleSize**2

    Definition Classes
    HasInitialCovariances
  61. final val initialCovariancesCol: Param[String]

    Permalink

    Initial covariances from dataframe column

    Initial covariances from dataframe column

    Definition Classes
    HasInitialCovariancesCol
  62. final val initialMeans: Param[Array[Array[Double]]]

    Permalink

    Initial means of the mixtures

    Initial means of the mixtures

    Definition Classes
    HasInitialMeans
  63. final val initialMeansCol: Param[String]

    Permalink

    Initial means from dataframe column

    Initial means from dataframe column

    Definition Classes
    HasInitialMeansCol
  64. final val initialMixtureModelCol: Param[String]

    Permalink

    Initial mixture model as a struct column

    Initial mixture model as a struct column

    Definition Classes
    HasInitialMixtureModelCol
  65. final val initialWeights: Param[Array[Double]]

    Permalink

    Initial weight of the mixtures

    Initial weight of the mixtures

    Definition Classes
    HasInitialWeights
  66. final val initialWeightsCol: Param[String]

    Permalink

    Initial weights as dataframe column

    Initial weights as dataframe column

    Definition Classes
    HasInitialWeightsCol
  67. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  68. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  69. final def isDefined(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  70. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  71. final def isSet(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  72. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  73. def keyFunc: (GaussianMixtureInput) ⇒ String

    Permalink
    Attributes
    protected
    Definition Classes
    StatefulTransformer
  74. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  75. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  76. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  77. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  78. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  79. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  80. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  81. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  82. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  83. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  84. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  85. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  86. final val minibatchSize: Param[Int]

    Permalink

    Number of samples in a batch

    Number of samples in a batch

    Definition Classes
    HasMinibatchSize
  87. final val minibatchSizeCol: Param[String]

    Permalink

    Number of samples in a batch from dataframe column

    Number of samples in a batch from dataframe column

    Definition Classes
    HasMinibatchSizeCol
  88. val mixtureCount: Int

    Permalink

    number of mixture components

    number of mixture components

    Definition Classes
    MultivariateGaussianMixture → HasInitialCovariances → HasInitialMeans → HasInitialWeights
  89. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  90. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  91. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  92. implicit val outEncoder: Encoder[GaussianMixtureOutput]

    Permalink
    Attributes
    protected
    Definition Classes
    StatefulTransformer
  93. lazy val params: Array[Param[_]]

    Permalink
    Definition Classes
    Params
  94. implicit val rowEncoder: Encoder[GaussianMixtureInput]

    Permalink
    Attributes
    protected
    Definition Classes
    StatefulTransformer
  95. final val sampleCol: Param[String]

    Permalink

    Param for sample column.

    Param for sample column.

    Definition Classes
    HasSampleCol
  96. final def set(paramPair: ParamPair[_]): MultivariateGaussianMixture.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  97. final def set(param: String, value: Any): MultivariateGaussianMixture.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  98. final def set[T](param: Param[T], value: T): MultivariateGaussianMixture.this.type

    Permalink
    Definition Classes
    Params
  99. def setBatchTrainMaxIter(value: Int): MultivariateGaussianMixture

    Permalink

    Sets the maximum iterations for batch EM mode

    Sets the maximum iterations for batch EM mode

    Definition Classes
    MixtureParams
  100. def setBatchTrainTol(value: Double): MultivariateGaussianMixture

    Permalink

    Sets the stopping criteria in terms of loglikelihood improvement for batch EM mode

    Sets the stopping criteria in terms of loglikelihood improvement for batch EM mode

    Definition Classes
    MixtureParams
  101. def setDecayRate(value: Double): MultivariateGaussianMixture

    Permalink

    Sets the step size as a decaying function rather than a constant step size, which might be preferred for batch training.

    Sets the step size as a decaying function rather than a constant step size, which might be preferred for batch training. If set, the step size will be replaced with the output of following function:

    stepSize = pow(2 + kIter, -decayRate)

    Where kIter is incremented by 1 at each minibatch.

    Definition Classes
    MixtureParams
  102. final def setDefault(paramPairs: ParamPair[_]*): MultivariateGaussianMixture.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  103. final def setDefault[T](param: Param[T], value: T): MultivariateGaussianMixture.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  104. def setEnableBatchEM: MultivariateGaussianMixture

    Permalink

    Enables batch EM mode.

    Enables batch EM mode. When enabled, transform method will do an iterative EM training with multiple passes as opposed to online training with single pass.

    Disabled by default

    Definition Classes
    MixtureParams
  105. def setEventTimeCol(value: String): MultivariateGaussianMixture

    Permalink

    Sets the event time column in the input DataFrame for event time based state timeout.

    Sets the event time column in the input DataFrame for event time based state timeout.

    Definition Classes
    StatefulTransformerParams
  106. def setInitialCovariances(value: Array[Array[Double]]): MultivariateGaussianMixture

    Permalink

    Sets the initial covariance matrices of the mixtures as a nested array of doubles.

    Sets the initial covariance matrices of the mixtures as a nested array of doubles. The dimensions of the array should be mixtureCount x sampleSize**2

  107. def setInitialCovariancesCol(value: String): MultivariateGaussianMixture

    Permalink

    Sets the initial covariance matrices of the mixtures from dataframe column.

    Sets the initial covariance matrices of the mixtures from dataframe column. Overrides the value set by setInitialCovariances

  108. def setInitialMeans(value: Array[Array[Double]]): MultivariateGaussianMixture

    Permalink

    Sets the initial mean vectors of the mixtures as a nested array of doubles.

    Sets the initial mean vectors of the mixtures as a nested array of doubles. The dimensions of the array should be mixtureCount x sample vector size

  109. def setInitialMeansCol(value: String): MultivariateGaussianMixture

    Permalink

    Sets the initial means from dataframe column.

    Sets the initial means from dataframe column. Overrides the value set by setInitialMeans

  110. def setInitialMixtureModelCol(value: String): MultivariateGaussianMixture

    Permalink

    Sets the initial mixture model directly from dataframe column

    Sets the initial mixture model directly from dataframe column

    Definition Classes
    MixtureParams
  111. def setInitialWeights(value: Array[Double]): MultivariateGaussianMixture

    Permalink

    Sets the initial weights of the mixtures.

    Sets the initial weights of the mixtures. The weights should sum up to 1.0.

    Definition Classes
    MixtureParams
  112. def setInitialWeightsCol(value: String): MultivariateGaussianMixture

    Permalink

    Sets the initial weights of the mixtures from dataframe column.

    Sets the initial weights of the mixtures from dataframe column. Column should contain array of doubles. Overrides the value set by setInitialWeights.

    Definition Classes
    MixtureParams
  113. def setMinibatchSize(value: Int): MultivariateGaussianMixture

    Permalink

    Sets the minibatch size for batching samples together in online EM algorithm.

    Sets the minibatch size for batching samples together in online EM algorithm. Estimate will be produced once per each batch. Having larger batches increases stability with increased memory footprint.

    Default is 1

    Definition Classes
    MixtureParams
  114. def setMinibatchSizeCol(value: String): MultivariateGaussianMixture

    Permalink

    Sets the minibatch size from dataframe column rather than a constant minibatch size across all states.

    Sets the minibatch size from dataframe column rather than a constant minibatch size across all states. Overrides setMinibatchSize setting.

    Definition Classes
    MixtureParams
  115. def setSampleCol(value: String): MultivariateGaussianMixture

    Permalink

    Sets the sample column for the mixture model inputs.

    Sets the sample column for the mixture model inputs. Depending on the mixture distribution, sample type should be different.

    Bernoulli => Boolean Poisson => Long MultivariateGaussian => Vector

    Definition Classes
    MixtureParams
  116. def setStateKeyCol(value: String): MultivariateGaussianMixture

    Permalink

    Sets the state key column.

    Sets the state key column. Each value in the column should uniquely identify a stateful transformer. Each unique value will result in a separate state.

    Definition Classes
    StatefulTransformerParams
  117. def setStateTimeoutDuration(value: String): MultivariateGaussianMixture

    Permalink

    Sets the state timeout duration for all states, only valid when state timeout mode is not 'none'.

    Sets the state timeout duration for all states, only valid when state timeout mode is not 'none'. Must be a valid duration string, such as '10 minutes'.

    Definition Classes
    StatefulTransformerParams
  118. def setStateTimeoutMode(value: String): MultivariateGaussianMixture

    Permalink

    Sets the state timeout mode.

    Sets the state timeout mode. Supported values are 'none', 'process' and 'event'. Enabling state timeout will clear the state after a certain timeout duration which can be set. If a state receives measurements after it times out, the state will be initialized as if it received no measurements.

    - 'none': No state timeout, state is kept indefinitely.

    - 'process': Process time based state timeout, state will be cleared if no measurements are received for a duration based on processing time. Effects all states. Timeout duration must be set with setStateTimeoutDuration.

    - 'event': Event time based state timeout, state will be cleared if no measurements are recieved for a duration based on event time determined by watermark. Effects all states. Timeout duration must be set with setStateTimeoutDuration. Additionally, event time column and it's watermark duration must be set with setEventTimeCol and setWatermarkDuration. Note that this will result in dropping measurements occuring later than the watermark.

    Default is 'none'

    Definition Classes
    StatefulTransformerParams
  119. def setStepSize(value: Double): MultivariateGaussianMixture

    Permalink

    Sets the step size parameter, which weights the current parameter of the model against the old parameter.

    Sets the step size parameter, which weights the current parameter of the model against the old parameter. A step size of 1.0 means ignore the old parameter, whereas a step size of 0 means ignore the current parameter. Values closer to 1.0 will increase speed of convergence, but might have adverse effects on stability. In an online setting, it is advised to set it close to 0.0.

    Default is 0.1

    Definition Classes
    MixtureParams
  120. def setStepSizeCol(value: String): MultivariateGaussianMixture

    Permalink

    Sets the step size from dataframe column, which would allow setting different step sizes accross measurements.

    Sets the step size from dataframe column, which would allow setting different step sizes accross measurements. Overrides the value set by setStepSize.

    Definition Classes
    MixtureParams
  121. def setUpdateHoldout(value: Int): MultivariateGaussianMixture

    Permalink

    Sets the update holdout parameter which controls after how many samples the mixture will start calculating estimates.

    Sets the update holdout parameter which controls after how many samples the mixture will start calculating estimates. Preventing update in first few samples might be preferred for stability.

    Definition Classes
    MixtureParams
  122. def setUpdateHoldoutCol(value: String): MultivariateGaussianMixture

    Permalink

    Sets the update holdout parameter from dataframe column rather than a constant value across all states.

    Sets the update holdout parameter from dataframe column rather than a constant value across all states. Overrides the value set by setUpdateHoldout.

    Definition Classes
    MixtureParams
  123. def setWatermarkDuration(value: String): MultivariateGaussianMixture

    Permalink

    Set the watermark duration for all states, only valid when state timeout mode is 'event'.

    Set the watermark duration for all states, only valid when state timeout mode is 'event'. Must be a valid duration string, such as '10 minutes'.

    Definition Classes
    StatefulTransformerParams
  124. implicit val stateEncoder: Encoder[GaussianMixtureState]

    Permalink
    Attributes
    protected
    Definition Classes
    StatefulTransformer
  125. final val stateKeyCol: Param[String]

    Permalink

    Param for state key column.

    Param for state key column. State keys uniquely identify the each state in stateful transformers, thus controlling the number of states and the degree of parallelization"

    Definition Classes
    HasStateKeyCol
  126. implicit val stateKeyEncoder: Encoder[String]

    Permalink
    Attributes
    protected
    Definition Classes
    FiniteMixture
  127. final val stateTimeoutDuration: Param[String]

    Permalink

    Param for state timeout duration.

    Param for state timeout duration.

    Definition Classes
    HasStateTimeoutDuration
  128. def stateUpdateSpec: MixtureUpdateSpec[Vector, MultivariateGaussianDistribution, GaussianMixtureDistribution, GaussianMixtureInput, GaussianMixtureState, GaussianMixtureOutput]

    Permalink
    Attributes
    protected
    Definition Classes
    FiniteMixture → StatefulTransformer
  129. final val stepSize: Param[Double]

    Permalink

    Controls the inertia of the current parameter.

    Controls the inertia of the current parameter.

    Definition Classes
    HasStepSize
  130. final val stepSizeCol: Param[String]

    Permalink

    stepSize as dataframe column

    stepSize as dataframe column

    Definition Classes
    HasStepSizeCol
  131. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  132. final val timeoutMode: Param[String]

    Permalink

    Param for timeout mode, controlling the eviction of states which receive no measurement for a certain duration

    Param for timeout mode, controlling the eviction of states which receive no measurement for a certain duration

    Definition Classes
    HasStateTimeoutMode
  133. def toString(): String

    Permalink
    Definition Classes
    Identifiable → AnyRef → Any
  134. def transform(dataset: Dataset[_]): DataFrame

    Permalink

    Transforms the dataframe of samples to a dataframe of mixture parameter estimates.

    Transforms the dataframe of samples to a dataframe of mixture parameter estimates.

    Definition Classes
    FiniteMixture → Transformer
  135. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame

    Permalink
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  136. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame

    Permalink
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  137. def transformAndValidateSchema(schema: StructType): StructType

    Permalink
    Attributes
    protected
    Definition Classes
    FiniteMixture
  138. def transformSchema(schema: StructType): StructType

    Permalink

    Applies the transformation to dataset schema

    Applies the transformation to dataset schema

    Definition Classes
    MultivariateGaussianMixture → PipelineStage
  139. def transformSchema(schema: StructType, logging: Boolean): StructType

    Permalink
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  140. def transformWithState(in: DataFrame)(implicit keyEncoder: Encoder[String]): Dataset[GaussianMixtureOutput]

    Permalink
    Attributes
    protected
    Definition Classes
    StatefulTransformer
  141. val uid: String

    Permalink
    Definition Classes
    MultivariateGaussianMixture → Identifiable
  142. final val updateHoldout: Param[Int]

    Permalink

    Update holdout parameter

    Update holdout parameter

    Definition Classes
    HasUpdateHoldout
  143. final val updateHoldoutCol: Param[String]

    Permalink

    Update holdout parameter from dataframe column

    Update holdout parameter from dataframe column

    Definition Classes
    HasUpdateHoldoutCol
  144. def validateWatermarkColumns(schema: StructType): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    StatefulTransformer
  145. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  146. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  147. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  148. final val watermarkDuration: Param[String]

    Permalink

    Param for watermark duration as string, measured from the eventTimeCol column.

    Param for watermark duration as string, measured from the eventTimeCol column. If set, measurements will be processed in append mode with the specified watermark duration.

    Definition Classes
    HasWatermarkDuration

Inherited from HasInitialCovariancesCol

Inherited from HasInitialCovariances

Inherited from HasInitialMeansCol

Inherited from HasInitialMeans

Inherited from FiniteMixture[Vector, MultivariateGaussianDistribution, GaussianMixtureDistribution, GaussianMixtureInput, GaussianMixtureState, GaussianMixtureOutput, MultivariateGaussianMixture]

Inherited from MixtureParams[MultivariateGaussianMixture]

Inherited from HasBatchTrainEnabled

Inherited from HasUpdateHoldoutCol

Inherited from HasBatchTrainTol

Inherited from HasBatchTrainMaxIter

Inherited from HasInitialMixtureModelCol

Inherited from HasDecayRate

Inherited from HasMinibatchSizeCol

Inherited from HasMinibatchSize

Inherited from HasUpdateHoldout

Inherited from HasSampleCol

Inherited from HasStepSize

Inherited from HasStepSizeCol

Inherited from HasInitialWeightsCol

Inherited from HasInitialWeights

Inherited from StatefulTransformer[String, GaussianMixtureInput, GaussianMixtureState, GaussianMixtureOutput, MultivariateGaussianMixture]

Inherited from StatefulTransformerParams[MultivariateGaussianMixture, String]

Inherited from HasStateTimeoutDuration

Inherited from HasStateKeyCol[String]

Inherited from HasWatermarkDuration

Inherited from HasEventTimeCol

Inherited from HasStateTimeoutMode

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

State Parameters

Members

Parameter setters

Parameter getters